Rapid Syntheses of Some Indole Alkaloids of the Calabar Bean

Stephen Horne, Nicholas Taylor, Scott Collins and Russell Rodrigo*
Guelph-Waterloo Centre for Graduate Work in Chemistry, Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Abstract

A rapid, efficient route to 3,3 -disubstituted oxindoles from o-iodo anilines has been developed. It involves the cyclisation of the corresponding fumarate amides 4 and 15 with butyllithium at $-100^{\circ} \mathrm{C}$ in the presence of an excess of trimethylchlorosilane. An X-ray crystal structure of 4 suggests that the speed and efficiency of this intramolecular Michael addition is dependent on the conformation adopted by 4 which is particularly suitable for the reaction. This method has been applied to the synthesis of the alkaloids physovenine, physostigmine and esermethole in very high overall yields.

The pyrrolo[2,3-b]indole alkaloid physostigmine 1 isolated from the Calabar bean of West Africa is well known for its inhibition of acetylcholine esterase. Many syntheses of both 1 and its oxygen analogue physovenine 2 have been reported. ${ }^{1}$ We now describe a novel, simple route to 3,3-disubstituted oxindoles, a structural feature of many oxindole alkaloids, and its application to the synthesis of $\mathbf{1}$ and $\mathbf{2}$ in high yield.

$1 \mathrm{X}=\mathrm{NMe}$
$13 \mathrm{R}=\mathrm{H}$
$2 \mathrm{X}=\mathrm{O}$
$14 R=1$

$R^{1}=R^{3}=H, R^{2}=1$
$4 R^{1}=H, R^{2}=I, R^{3}=M e$
$7 R^{1}=H, R^{2}=B r, R^{3}=H$
$R^{1}=H, R^{2}=B r, R^{3}=M e$
$5 R^{1}=O M e, R^{2}=1, R^{3}=M e$

$10 R^{1}=R^{2}=H, X=O$
$R^{1}=H, R^{2}=X=O$
$R^{1}=O M e, R^{2}=H, X=O$
$20 R^{1}=O M e, R^{2}=X=O$
$21 \mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{X}=\mathrm{NMe}$

Our synthetic investigations were begun with commercially available ortho-iodoaniline which was acylated with the mono acid chloride of ethyl fumarate and the resulting amide $\mathbf{3}$ methylated with sodium hydride and methyl iodide to the N-methyl amide 4. Cyclisation to the oxindole 5 by intramolecular Michael addition was triggered by lithium-iodine exchange (butyllithium at $-100{ }^{\circ} \mathrm{C}$ for 30 s). Quenching the resulting
mixture with aqueous ammonium chloride at this temperature revealed that much polymeric and ill-defined material was formed together with only a 43% yield of the desired product 5 . We attributed the low yield to anionic polymerisations initiated by the ester enolate that results from the cyclisation. To forestall such processes 5 equiv. of trimethylchlorosilane were added to the reaction mixture before the addition of butyllithium at $-100^{\circ} \mathrm{C}$. The results confirmed our hypothesis, polymerisation was prevented by silylation of the ester enolate and the yield of the desired oxindole was doubled (85%). It is quite remarkable that no aromatic silylation could be detected under these conditions. The intramolecular cyclisation of the aryllithium intermediate produced by the exchange must take place so rapidly that silylation cannot compete even in the presence of an excess of chlorosilane. In order to clarify the nature of the structural features of compound 4 that seem to promote the cyclisation an X-ray crystal structure was completed, and the result is shown in Fig. 1. The molecule adopts a conformation where the plane of the amide substituent $\left(N_{7}-C_{13}\right)$ is essentially orthogonal to the plane of the benzene ring and this conformation is probably maintained by the fact that the steric interactions between the $\mathrm{C}_{8} \mathrm{~N}$-methyl group and the C_{2} iodine and C_{6} hydrogen are at a minimum. The $\mathrm{N}_{7}-\mathrm{C}_{9}$ bond has normal amide character $(1.343 \AA)$ and we find that no change in the ${ }^{1} \mathrm{H}$ NMR spectrum of 4 occurs between 213 and 333 K . The double bond character of the $\mathrm{N}_{7}-\mathrm{C}_{9}$ amide also helps to maintain planarity in the N_{7} to C_{13} segment of the molecule. The X-ray structure of 6 shows similar features. ${ }^{2}$

A different view of the molecule (Fig. 2) aligns the reacting centres C_{2} and C_{11} and shows their relationship and proximity more clearly; C_{2} and C_{11} are $3.529 \AA$ apart and the $C_{2}-C_{11}-C_{12}$ angle is 150.7° in 4 . The exchange reaction produces the $\mathrm{C}-2$ lithiated intermediate and a PC Model \dagger minimisation of this compound using the X-ray coordinates of 4 with iodine replaced by lithium showed a very similar relationship between C_{2} and $\mathrm{C}_{11}-\mathrm{C}_{12}$ in the minimised structure. Furthermore, the calculations indicate that a rotation of $\pm 20^{\circ}$ about the $\mathrm{C}_{1}-\mathrm{N}_{7}$ bond results in an increase in energy of only $1.0 \mathrm{kcal} \mathrm{mol}^{-1}$ using the rigid rotor approximation within PC Model. It therefore seems that the lithium-iodine exchange produces an intermediate well suited to the trajectory requirements of the intramolecular 5-exo-trig addition and it must occur virtually instantaneously. For this reason, intermolecular silylation of the intermediate cannot compete.

[^0]

Fig. 1

Fig. 2

The bromo analogue 8 , obtained by methylation of 7 , does not cyclise even after 1 h at $-90^{\circ} \mathrm{C}$. Addition of butyllithium to the alkene double bond and extensive polymerisation is observed instead. The aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product mixture indicates that the bromine remains largely unexchanged in the polymeric material. Lithium-iodine exchange is much faster than lithium-bromine exchange, and the failure of the cyclisation with $\mathbf{8}$ must be attributed to this fact. Intramolecular cyclisations of aryl bromides, promoted by tributyltin hydride and proceeding by a radical mechanism have been employed however, to prepare both oxindoles ${ }^{3}$ and pyrrolo $[2,3-b]$ indoles. ${ }^{4}$ We find that with substrates similar to 4 , the radical pathway gives a lower yield ${ }^{3.4}$ of the cyclised product which is also more difficult to purify.

The oxindole 5 was methylated at $\mathrm{C}-3$ with sodium hydride and methyl iodide at $0^{\circ} \mathrm{C}$ to give 9 which was reduced with lithium aluminium hydride in THF (tetrahydrofuran) at $0^{\circ} \mathrm{C}$ to the tricyclic furo-indole 10, a model for the alkaloid physovenine. The oxindole 9 was saponified to the acid 11 which after conversion into its salt with sodium hydride, was reduced with lithium triethylborohydride at $0^{\circ} \mathrm{C}$ and acidified to provide the lactone $\mathbf{1 2}$ which was a model for physostigmine.

The successful conclusion of these sequences in excellent overall yields allowed us to proceed with the synthesis of 1 and 2. N-methyl- p-anisidine was ortho-iodinated by adaptation of the recent four-step, 'one-pot' process used for ortho-functionalisation of aromatic amines. ${ }^{5}$ Thus, treatment of 13 with butyllithium at $-60^{\circ} \mathrm{C}$ was followed by gaseous CO_{2} at $25^{\circ} \mathrm{C}$, recooling to $-60^{\circ} \mathrm{C}$, ortho deprotonation with 1.2 mol of tertbutyllithium and warming to $-20^{\circ} \mathrm{C}$. After 1 h at that temperature, iodination was conducted by adding 1.5 mol of 1,2 -
diiodoethane. The reaction mixture was allowed to reach room temperature and the iodinated product 14 isolated in 55% yield after hydrolysis of the carbamate with 5% aqueous hydrochloric acid. Many attempts at direct bromination and iodination of 13 were made without success.

The o-iodoanisidine 14 was now subjected to a similar sequence as the one worked out with the model series. Thus acylation to 15 was followed by cyclisation to the oxindole 16 in 92% yield with butyllithium and 5 equiv. of trimethylchlorosilane at $-100^{\circ} \mathrm{C}$. Methylation as before to 17 was followed by reduction ${ }^{6}$ to the tricyclic furoindole 18. Conversion of the latter into physovenine 2 by demethylation with boron tribromide and treatment of the resulting phenol with methyl isocyanate had been reported ${ }^{7}$ to proceed in 83% overall yield. Thus, our route to physovenine provides this alkaloid in 30% overall yield from the commercial material N-methyl- p anisidine.

The oxindole 17 was converted into the tricyclic lactone 20 through the acid 19 as before. This lactone which is obtainable in 35% overall yield from $\mathbf{1 4}$ has been quantitatively converted ${ }^{8}$ into esermethole 21 by ammonolysis with methylamine and reduction of the amide by lithium aluminium hydride. Physostigmine $\mathbf{1}$ is available from esermethole by the same demethylation (boron tribromide), acylation (methyl isocyanate) sequence as before. The synthesis of $\mathbf{2 0}$ thus concludes a formal synthesis of physostigmine. We are currently investigating the applicability of the cyclisation process to the synthesis of other oxindole alkaloids.

Experimental

All reactions involving air and/or moisture sensitive reagents were carried out in flame and/or oven dried glassware which was assembled hot, and cooled under a positive pressure of argon. Reaction temperatures refer to external cooling bath temperatures unless otherwise noted. THF and diethyl ether were distilled from sodium benzophenone ketyl. DMF ($N, N-$ dimethylformamide), hexanes and TMSCl were distilled from CaH_{2}. Oxalyl chloride and iodomethane were distilled from CaCl_{2}. Pyridine was dried over anhydrous KOH. 2-Iodoaniline was purchased from Fluka Chemical Company. All other reagents were purchased from Aldrich Chemical Company and used without further purification. Flash chromatography was carried out using Merck 9385 silica gel 60 ($230-400$ mesh). M.p.s were determined on a Fischer Mel-Temp apparatus in open capillaries and are uncorrected. IR spectra were recorded on a Perkin-Elmer 983 spectrophotometer with only the strongest and/or most diagnostic bands reported relative to the $1601 \mathrm{~cm}^{-1}$ band of polystyrene. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AC-200 or AM-250 spectrometers in CDCl_{3}. Chemical shifts are reported relative to internal tetramethylsilane ($\delta 0.00$) for ${ }^{1} \mathrm{H}$ spectra and to $\mathrm{CDCl}_{3}(\delta 77.00)$ for ${ }^{13} \mathrm{C}$ spectra, and coupling constants (J) are reported in Hz . Mass spectra were recorded on a Kratos MS 890 spectrometer using electron impact ionization (unless otherwise noted) at the Guelph Mass Spectrometry Centre, University of Guelph, Guelph, Ontario and are reported in the order m / z (relative intensity to base peak, assignment). Elemental analyses were performed by M-H-W Laboratories, Phoenix, Az., U.S.A.

2-Iodo-4-methoxy-N-methylaniline 14 .-To a cold ($-60{ }^{\circ} \mathrm{C}$, internal temperature) solution of N-methyl- p-anisidine $\mathbf{1 3}$ (1.87 $\mathrm{g}, 13.6 \mathrm{mmol})$ in THF $\left(80 \mathrm{~cm}^{3}\right)$ was added $\operatorname{BuLi}\left(1.6 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ solution in hexanes; $9.40 \mathrm{~cm}^{3}, 15.0 \mathrm{mmol}$). The solution was warmed to $25^{\circ} \mathrm{C}$ for 20 min while a slow stream of dry CO_{2} was passed over and then the resulting bright yellow solution concentrated under reduced pressure. The residue was taken up in dry THF ($80 \mathrm{~cm}^{3}$), cooled to $-60^{\circ} \mathrm{C}$, and treated dropwise
with tert-BuLi $\left(9.60 \mathrm{~cm}^{3}\right.$ of a $1.7 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in pentane, $16.3 \mathrm{mmol})$. After warming to $-20^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was cooled to $-60^{\circ} \mathrm{C}$ and quenched with a THF (40 cm^{3}) solution of 1,2 -diiodoethane ($5.70 \mathrm{~g}, 20.4 \mathrm{mmol}$). After warming to 25 C slowly overnight, the solution was treated cautiously at $0{ }^{\circ} \mathrm{C}$ with $5 \% \mathrm{HCl}$ until the evolution of CO_{2} had ceased and then basified at $0{ }^{\circ} \mathrm{C}$ with $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}$. The organic materials were extracted with $\mathrm{CHCl}_{3}\left(3 \times 25 \mathrm{~cm}^{3}\right)$ and the combined extracts washed (brine, $25 \mathrm{~cm}^{3}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Flash chromatography of the residue (silica, $50 \% \mathrm{CHCl}_{3}-$ hexanes eluent) yielded $1.96 \mathrm{~g}\left(55^{\circ}{ }_{\circ}\right)$ of $\mathbf{1 4}$ (short path distillation of 14 is possible but not advisable as extensive decomposition was noted): b.p. $76-80^{\circ} \mathrm{C}$ (0.05 Torr); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3393,1606,1035,848,799$ and 745; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.84(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}), 3.73$ (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.80 (br s, $1 \mathrm{H}, \mathrm{NH}), 6.51$ (d, $J 8.9,1 \mathrm{H}, 6-\mathrm{H}), 6.87$ (dd, $J 8.9,2.8$, $1 \mathrm{H}, 5-\mathrm{H})$ and $7.28(\mathrm{~d}, J 2.8,1 \mathrm{H}, 3-\mathrm{H}) ; m /=263\left(100, \mathrm{M}^{+}\right), 248$ (80), 136 (7), 121 (17), 120 (16), 93 (16), 92 (19), 78 (15), 77 (11), 67 (13), $66(14), 65(11), 63(13)$ and 52 (13) (Found: \mathbf{M}^{+}, 262.9808. $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{INO}$ requires $\mathrm{M}, 262.9808$).

General Procedure for Preparation of Amides 3, 7 and 15.--To a solution of monoethyl fumarate ($5.75 \mathrm{~g}, 40 \mathrm{mmol}$) in THF (40 cm^{3}) was added oxalyl chloride ($7.0 \mathrm{~cm}^{3}, 80 \mathrm{mmol}$) and DMF (2 drops) (Caution: vigorous gas evolution). After 1 h , the solution was concentrated under reduced pressure and the crude acid chloride taken up in $\mathrm{Et}_{2} \mathrm{O}\left(200 \mathrm{~cm}^{3}\right)$. After cooling to -78 C , a solution of either 14,2 -iodoaniline or 2-bromoaniline $(44 \mathrm{mmol})$ and pyridine ($3.5 \mathrm{~cm}^{3}, 44 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(60 \mathrm{~cm}^{3}\right)$ was added dropwise (provision for efficient stirring is absolutely necessary). The resulting pink suspension was warmed to $25^{\circ} \mathrm{C}$ for 1 h and then partitioned between $\mathrm{EtOAc}\left(200 \mathrm{~cm}^{3}\right)$ and brine $\left(200 \mathrm{~cm}^{3}\right)$. The separated phase was extracted with EtOAc $\left(3 \times 100 \mathrm{~cm}^{3}\right)$ and the combined organic phases were washed successively with $5^{\circ}, \mathrm{HCl}\left(100 \mathrm{~cm}^{3}\right)$ and brine ($100 \mathrm{~cm}^{3}$). Drying ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentration under reduced pressure yielded crude amides which were triturated with cold $\mathrm{Et}_{2} \mathrm{O}$ and recrystallized to afford analytical samples.

Ethyl (E)-4-[N-(2'-iodophenyl)amino]-4-oxobut-2-enoate 3. 84°; m.p. $144.5-145^{\circ} \mathrm{C}$ (EtOAc) (Found: C, 41.8; H, 3.6. $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{INO}_{3}$ requires $\left.\mathrm{C}, 41.76 ; \mathrm{H}, 3.51 \%\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $3374,1718,1691$ and $1584 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.34(\mathrm{t}, J 7.1,3 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.29\left(\mathrm{q}, J 7.1,2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.89(\mathrm{dt}, J$ $7.7,1.6,1 \mathrm{H}, 4-\mathrm{H}), 6.97,7.09\left(\mathrm{ABq}, J_{\mathrm{AB}} 15.3,2 \mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}\right)$, 7.37 (dt, J 7.7, 1.6, $\left.1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.81(\mathrm{dd}, J$ $\left.7.7,1.6,1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right)$ and $8.33\left(\mathrm{~d}, J 7.9,1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right) ; m /=345(18$, M^{+}), 300 (9), 219 (68), 218 (100), 145 (19), 127 (17), 99 (21) and 91 (13).

Ethyl(E)-4-[N-(2'-bromophenyl)amino]-4-oxobut-2-enoate 7. $64^{\circ} \%$ m.p. $125.5-126.5^{\circ} \mathrm{C}$ (EtOAc-hexanes) (Found: C, 48.15; $\mathrm{H}, ~ 4.3 . \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{BrNO}_{3}$ requires $\mathrm{C}, 48.34 ; \mathrm{H}, 4.06 \%$); $y_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3393,1720,1692,1302,1202$ and $1154 ; \delta_{\mathrm{H}^{-}}$ $(200 \mathrm{MHz}) 1.31\left(\mathrm{t}, J 7.1,3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.25(\mathrm{q}, J 7.1,2 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.91,7.03\left(\mathrm{ABq}, J_{\mathrm{AB}} 15.3,2 \mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}\right), 6.99$ $\left(\mathrm{dt}, J 1.5,8.0,1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 7.31\left(\mathrm{dt}, J 1.3,8.0,1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.52(\mathrm{dd}, J$ $8.0,1.5,1 \mathrm{H}, 3-\mathrm{H}), 7.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$ and $8.41(\mathrm{~d}, J 8.0,1 \mathrm{H}$, $\left.6^{\prime}-\mathrm{H}\right)$; $m_{i}=299\left(8, \mathrm{M}^{+}\right), 297(8), 254$ (7), 252 (6), 218 (100), 173 (44), 171 (41), 145 (18), 127 (26) and 99 (23).

Ethyl (E)-4-[N-(2'-iodo-4'-methoxyphenyl)-N-methylamino]-4-oxobut-2-cnoate 15. 90%; m.p. $70.5-71^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexanes) (Found: $\mathrm{C}, 43.35 ; \mathrm{H}, 4.35 . \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{INO}_{4}$ requires $\mathrm{C}, 43.20 ; \mathrm{H}$, 4.15); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1718,1657,1592,1031,784,755$ and 735; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.25\left(\mathrm{t}, J 7.1,3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.24(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{NMe}), 3.83(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 4.16\left(\mathrm{q}, J 7.1,2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $6.66,6.86\left(\mathrm{ABq}, J_{\mathrm{AB}} 15.6,2 \mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}\right), 6.94(\mathrm{dd}, J 8.7,2.7,1 \mathrm{H}$, $\left.5^{\prime}-\mathrm{H}\right), 7.14\left(\mathrm{~d}, J 8.7,1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right)$ and $7.42\left(\mathrm{~d}, J 2.7,1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right) ; m /=$ $389\left(6, \mathrm{M}^{+}\right), 263(49), 262(100), 189(22), 188(13), 135(71), 134$ (18), $120(25), 119(13), 118(25)$ and 77 (20).

General Procedure for Preparation of N-Methyl Amides $\mathbf{4}$ and 8.-To a suspension of $\mathrm{NaH}(60 \% \mathrm{wt}$ dispersion washed free of oil with $2 \times 20 \mathrm{~cm}^{3}$ of hexanes; $1.60 \mathrm{~g}, 40 \mathrm{mmol}$) in THF (60 cm^{3}) at $0^{\circ} \mathrm{C}$ was added dropwise a solution of amide $\mathbf{3}$ or $7(33.3$ mmol) in THF ($100 \mathrm{~cm}^{3}$). The resulting bright yellow solution was warmed to $25^{\circ} \mathrm{C}$ for 30 min , recooled to $0{ }^{\circ} \mathrm{C}$, quenched with iodomethane $\left(4.2 \mathrm{~cm}^{3}, 67 \mathrm{mmol}\right)$ and stirred for 12 h at $25^{\circ} \mathrm{C}$. Water ($100 \mathrm{~cm}^{3}$) was added and the THF removed under reduced pressure. The aqueous residue was extracted with EtOAc $\left(3 \times 100 \mathrm{~cm}^{3}\right)$ and the combined extracts were washed (brine, $100 \mathrm{~cm}^{3}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to provide the crude amides which were flash chromatographed (silica, 30% EtOAc-hexanes) and recrystallized to provide crystalline solids.

Ethyl (E)-4-[N-(2'-iodophenyl)-N-methylamino]-4-oxobut-2enoate 4. 79%, m.p. $93-94{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexanes) (Found: C, 43.6; $\mathrm{H}, 4.0 . \quad \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{INO}_{3}$ requires C , $43.47 ; \quad \mathrm{H}, 3.94 \%$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1720,1660,1636,1577$ and $1302 ; \delta_{\mathrm{H}}(200$ $\mathrm{MHz}) 1.24\left(\mathrm{t}, J 7.2,3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.27(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}), 4.15(\mathrm{q}, J$ $\left.7.2,2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.60,6.88\left(\mathrm{ABq}, J_{\mathrm{AB}} 15.2,2 \mathrm{H}, 2-\mathrm{H}\right.$, $3-\mathrm{H}), 7.12$ (ddd, $\left.J 7.8,7.4,1.7,1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 7.25$ (dd, $J 7.8,1.6,1 \mathrm{H}$, $\left.6^{\prime}-\mathrm{H}\right), 7.44\left(\mathrm{dt}, J 7.7,1.4,1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right)$ and $7.94(\mathrm{dd}, J 7.9,1.4,1 \mathrm{H}$, $\left.3^{\prime}-\mathrm{H}\right) ; \quad \delta_{\mathrm{C}}(50 \mathrm{MHz}) \quad 14.07\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 36.53\left(\mathrm{NCH}_{3}\right)$, $60.98\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 99.32\left(\mathrm{C}-2^{\prime}\right), 129.22\left(\mathrm{C}-6^{\prime}\right), 130.09\left(\mathrm{C}-5^{\prime}\right)$, 130.36 ($\mathrm{C}-4^{\prime}$), 131.65 (C-2), 133.47 (C-3), 140.38 (C-3'), 144.69 (C-1'), $163.86(\mathrm{C}-4)$ and $165.47(\mathrm{C}-1) ; m /=$ (CI) 360 (93 , $\left.\mathrm{M}^{+}+1\right), 235(12), 234(78), 161$ (13) and $160(100)$.

Ethyl (E)-4-[N-(2'-bromophenyl)-N-methylamino]-4-oxobut-2-enoate 8. 85%; m.p. $79-80^{\circ} \mathrm{C}$ (hexanes) (Found: C, 49.85; H , 4.5. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{BrNO}_{3}$ requires $\mathrm{C}, 50.02 ; \mathrm{H}, 4.53 \%$); $y_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1720,1662$ and $1639 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.24(\mathrm{t}$, $\left.J 7.2,3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}), 4.15(\mathrm{q}, J 7.2,2 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.64,6.87\left(\mathrm{ABq}, J_{\mathrm{AB}} 15.2,2 \mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}\right), 7.25-$ $7.44\left(\mathrm{~m}, 3 \mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right)$ and $7.70\left(\mathrm{dd}, J 6.9,1.5,1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right)$; $m /=314\left(0.1, \mathrm{M}^{+}\right), 312(0.3), 232(100), 204(29), 187(25), 185$ (25), 159 (15), 127 (15) and 77 (19).

General Procedure for Preparation of Oxindoles 5 and 16.-To a cold ($-100^{\circ} \mathrm{C}$, internal temperature) solution of amide 4 or $15(5.6 \mathrm{mmol})$ in THF-Et ${ }_{2} \mathrm{O}$-hexanes ($4: 1: 1$ by volume, 45 $\left.\mathrm{cm}^{3}\right)$ containing $\mathrm{TMSCl}\left(3.6 \mathrm{~cm}^{3}, 28 \mathrm{mmol}\right)$ in a 3-necked round bottom flask equipped with Ar inlet, low temperature thermometer and rubber septum was added $\operatorname{BuLi}\left(1.6 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ solution in hexanes; $3.9 \mathrm{~cm}^{3}, 6.2 \mathrm{mmol}$) at a rate such that the reaction temperature was maintained $\leq-95^{\circ} \mathrm{C}$. Immediately following the addition, sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(10 \mathrm{~cm}^{3}\right)$ was added and the solution allowed to reach $25^{\circ} \mathrm{C}$. Water $\left(10 \mathrm{~cm}^{3}\right)$ was added and the organic solvents were removed under reduced pressure. The aqueous residue was extracted with EtOAc $\left(3 \times 25 \mathrm{~cm}^{3}\right)$ and the combined extracts were washed (brine, 25 cm^{3}) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure afforded oils which were flash chromatographed (silica, $30 \% \mathrm{EtOAc}$-hexanes eluent) and then Kugelrohr distilled or recrystallized to afford analytical samples.

3-Ethoxycarbonylmethyl-1-methylindol-2(3H)-one 5.85%; b.p. $95-100{ }^{\circ} \mathrm{C}\left(0.04\right.$ Torr, Kugelrohr) (Found: C, 65.3; H, 6.7. $\mathrm{C}_{12^{-}}$ $\mathrm{H}_{15} \mathrm{NO}_{3}$ requires $\mathrm{C}, 65.14 ; \mathrm{H}, 6.85$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1717,1663$ and $1611 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.20\left(\mathrm{t}, J 7.2,3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.78$ (dd, $\left.J 16.8,8.1,1 \mathrm{H}, \mathrm{CHCO}_{2} \mathrm{Et}\right), 3.08(\mathrm{dd}, J 16.8,4.4,1 \mathrm{H}, \mathrm{CH}$, $\mathrm{CO}_{2} \mathrm{Et}$), 3.23 (s, $3 \mathrm{H}, \mathrm{NMe}$), 3.78 (dd, $\left.J 8.1,4.4,1 \mathrm{H}, 3-\mathrm{H}\right), 4.09-$ $4.18\left(\mathrm{AB}\right.$ of $\left.\mathrm{ABX}_{3}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.83(\mathrm{~d}, J 7.7,1 \mathrm{H}, 7-\mathrm{H})$, $7.03(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H})$ and $7.23-7.32(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}, 6-\mathrm{H}) ; m /=233(10$, M^{+}), $188(2), 160(12), 159(24), 74(9), 73(61), 61$ (22), $60(10)$, 45 (100) and 43 (46).

3-Ethoxycarbonylmethyl-5-methoxy-1-methylindol-2(3H)-one 16. 92%; m.p. $88-89^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexanes) (Found: C, 64.0; H, 6.6. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires $\mathrm{C}, 63.86 ; \mathrm{H}, 6.52$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 1727, 1601, 1248 and $1032 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.22(\mathrm{t}, J 7.1,3 \mathrm{H}$,
$\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.75\left(\mathrm{dd}, \mathrm{J} 16.9,8.2,1 \mathrm{H}, \mathrm{CHCO}_{2} \mathrm{Et}\right), 3.07$ (dd, J 16.9, 4.4, $1 \mathrm{H}, \mathrm{CHCO} \mathrm{CH}_{2}$), 3.21 (s, $3 \mathrm{H}, \mathrm{NMe}$), 3.78 ($\mathrm{s}, 3$ $\mathrm{H}, \mathrm{OMe}), 4.15\left(\mathrm{q}, J 7.1,2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.73$ (d, J8.4, 1 $\mathrm{H}, 6-\mathrm{H})$ and $6.79-6.91(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}, 7-\mathrm{H}) ; \mathrm{m} /=263$ (43, M^{+}), 218 (8), 190 (50), 189 (100), 174 (34), 147 (5), 146 (5), 118 (6) and 117 (4).

General Procedure for the Preparation of Furoindoles 10 and 18.-To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of oxindole 5 or $16(0.433 \mathrm{mmol})$ in THF ($4 \mathrm{~cm}^{3}$) was added LAH ($66 \mathrm{mg}, 1.7 \mathrm{mmol}$) in small portions. The mixture was stirred an additional 1 h at $0{ }^{\circ} \mathrm{C}$ and then treated with brine $\left(1 \mathrm{~cm}^{3}\right)$ cautiously until the evolution of H_{2} had ceased. Filtration and concentration under reduced pressure produced oils which were taken up in $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$, and washed (brine, $5 \mathrm{~cm}^{3}$), dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated. Purification through a short plug of silica eluting with 10° 。 $\mathrm{Et}_{2} \mathrm{O}$-hexanes yielded furoindoles 10 and 18 respectively as colourless oils.

3a,8-Dimethyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole $\mathbf{1 0}$. $80^{\circ}{ }_{0}$ (Found: $\mathrm{M}^{+}, 189.1161 . \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}$ requires $\mathrm{M}, 189.1154$); $\delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.98-2.17(\mathrm{~m}, 2 \mathrm{H}, 2 \times 3-\mathrm{H})$, 2.92 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NMe}$), $3.40-3.50(\mathrm{~m}, 1 \mathrm{H}, 2 x-\mathrm{H}), 3.91-3.98(\mathrm{~m}, 1 \mathrm{H}$, $2 \beta-\mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}), 6.36(\mathrm{~d}, J 7.8,1 \mathrm{H}, 7-\mathrm{H}), 6.67(\mathrm{dt}, J 7.4$, $0.8,5-\mathrm{H})$ and $7.02-7.13(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}, 6-\mathrm{H}) ; \delta_{\mathrm{C}}(63 \mathrm{MHz}) 24.82$ $\left(\mathrm{CH}_{3}\right), 30.94\left(\mathrm{NCH}_{3}\right), 41.84(\mathrm{C}-3), 52.38(\mathrm{C}-3 \mathrm{a}), 67.35(\mathrm{C}-2)$, 104.96 (C-7 or $\mathrm{C}-8 \mathrm{a}$), 105.16 (C-8a or $\mathrm{C}-7$), 117.38 (C-6), 122.48 (C-5), 128.16(C-4), $134.58(\mathrm{C}-3 \mathrm{~b})$ and $150.52(\mathrm{C}-7 \mathrm{a}) ; \mathrm{m} / \mathrm{z} 189(100$, $\left.\mathbf{M}^{+}\right), 158(39), 144(30), 143(11), 130(6), 115(5)$ and 77 (4).

3a,8-Dimethyl-5-methoxy-3,3a,8,8a-tetrahydro-2H-furo-
[2,3-b]indole 18. $90^{\circ} \%$ (Found: $\mathbf{M}^{+}, 219.1260 . \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $M, 219.1260) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.96-$ $2.16(\mathrm{~m}, 2 \mathrm{H}, 2 \times 3-\mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}), 3.41-3.51(\mathrm{~m}, 1 \mathrm{H}$, $2 x-\mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.90-3.97(\mathrm{~m}, 1 \mathrm{H}, 2 \beta-\mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}$, $8 \mathrm{a}-\mathrm{H}), 6.27(\mathrm{~d}, J 8.1,1 \mathrm{H}, 6-\mathrm{H})$ and 6.63-6.69 (m, $2 \mathrm{H}, 4-\mathrm{H}, 7-\mathrm{H})$; $\dot{\delta}_{\mathrm{C}}(63 \mathrm{MHz}) 24.59\left(\mathrm{CH}_{3}\right), 31.72(\mathrm{NMe}), 41.57(\mathrm{C}-3), 52.58(\mathrm{C}-3 \mathrm{a})$, 56.19 (OMe), 67.44 (C-2), 105.35 (C-6 or C-8a), 105.74 (C-6 or C-8a), 110.54 (C-4 or C-7), 112.31 (C-4 or C-7), 136.10 (C-3b), $145.04(\mathrm{C}-7 \mathrm{a})$ and $152.81(\mathrm{C}-5) ; m /=219\left(100, \mathrm{M}^{+}\right), 204(64), 188$ (62), 174 (30), $160(18), 132(15)$ and 69 (14).

General Procedure for Preparation of Acids 11 and 19.- A solution of either ethyl ester 5 or $16(2.0 \mathrm{mmol})$ and $\mathrm{NaOH}(2$ $\mathrm{mol} \mathrm{dm}{ }^{-3} ; 3 \mathrm{~cm}^{3}$) in $\mathrm{MeOH}\left(12 \mathrm{~cm}^{3}\right.$) was stirred 24 h at $25^{\circ} \mathrm{C}$ and then concentrated under reduced pressure. To the residue was added water $\left(15 \mathrm{~cm}^{3}\right)$ and the aqueous solution extracted once with hexanes $\left(10 \mathrm{~cm}^{3}\right)$. To the aqueous phase was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ and the two phase system acidified at 0 C with $5 \% \mathrm{HCl}$ to pH 2 . The organic phase was separated and the aqueous residue extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 10 \mathrm{~cm}^{3}\right)$. Washing of the combined extracts (brine, $15 \mathrm{~cm}^{3}$), drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentration under reduced pressure afforded the corresponding acids 11 and 19 as colourless solids. Recrystallization afforded analytical samples.

3-Carboxymethyl-1,3-dimethylindol-2(3H)-one 11. 98% m.p. $179-180.5^{\circ} \mathrm{C}$ (EtOAc-hexanes) (Found: M^{+}, 219.0891. $\mathrm{C}_{12^{-}}$ $\mathrm{H}_{13} \mathrm{NO}_{3}$ requires $M, 219.0896$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3400-2400$, 1708 and $1611 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.78,2.98(\mathrm{ABq}$, $\left.J_{\mathrm{AB}} 16.4,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 3.23(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}), 6.86(\mathrm{~d}, J 7.8,1 \mathrm{H}$, $7-\mathrm{H}), 7.07(\mathrm{dt}, J 7.3,0.7,1 \mathrm{H}, 5-\mathrm{H}), 7.19(\mathrm{~d}, J 6.8,1 \mathrm{H}, 4-\mathrm{H})$ and 7.28 (dt, $J 7.1,1.2,1 \mathrm{H}, 6-\mathrm{H}) ; m /=219\left(54, \mathrm{M}^{+}\right), 174(19), 160$ (100), 130 (16), 117 (9), 95 (8) and 77 (8).

3-Carboxymethyl-5-methox-1,3-dimethylindol-2(3H)-one 19. 99°; m.p. ${ }^{129-130} \mathrm{C}$ (EtOAc-hexanes) (Found: C, 62.55; H, 5.95. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4}$ requires $\left.\mathrm{C}, 62.64 ; \mathrm{H}, 6.08\right) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.39$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.78,2.96\left(\mathrm{ABq}, J_{\mathrm{AB}} 16.5,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 3.20(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{NMe}$), 3.78 (s, $3 \mathrm{H}, \mathrm{OMe}$) and 6.72-6.82 (m, $3 \mathrm{H}, 4-\mathrm{H}, 6-\mathrm{H}$, $7-H) ; m /=249\left(64, \mathrm{M}^{+}\right), 234(20), 190(66), 165(44), 55(53)$ and 40 (7).

Table 1 Atomic coordinates ($\times 10^{4}$)

	x	y	z
Molecule 1			
C(1)	$8056(5)$	$1145(3)$	$1503(2)$
C(2)	9475 (5)	$1285(4)$	$1006(3)$
C(3)	$9542(6)$	$1651(4)$	125(3)
C(4)	$8182(5)$	$1837(4)$	-247(3)
C(5)	$6772(6)$	$1641(4)$	273(3)
C(6)	$6661(5)$	$1322(4)$	$1093(3)$
N(7)	$7930(4)$	840(3)	$2417(2)$
C(8)	$7395(7)$	$1953(4)$	$2832(3)$
C(9)	8270 (4)	- 379(3)	$2898(2)$
$\mathrm{O}(10)$	$8114(3)$	-582(3)	$3680(2)$
C(11)	$8838(5)$	$-1470(3)$	2 463(2)
C(12)	$9416(5)$	-2707(4)	$2882(2)$
C(13)	$9929(5)$	$-3807(4)$	2 458(2)
$\mathrm{O}(14)$	$9919(4)$	$-3706(3)$	$1715(2)$
$\mathrm{O}(15)$	$10340(4)$	-4951(3)	$3027(2)$
$C(16)$	$10917(7)$	$-6142(5)$	2 696(3)
C(17)	$12270(7)$	$-6534(6)$	2 424(4)
I(18)	$11569.1(3)$	882.1(3)	$1575.3(2)$
Molecule 2			
C(1)	$5287(5)$	$2213(3)$	$5380(2)$
C(2)	$6429(5)$	$2804(4)$	$4965(2)$
C(3)	$6025(5)$	$3902(4)$	$4312(2)$
C(4)	4446 (5)	$4411(4)$	$4084(2)$
C(5)	$3257(5)$	$3823(4)$	$4535(3)$
C(6)	$3643(5)$	$2781(4)$	$5139(2)$
N(7)	$5700(4)$	$1041(3)$	$6042(2)$
C(8)	$6405(6)$	-213(4)	$5784(3)$
C(9)	5 369(4)	$1048(3)$	$6871(2)$
$\mathrm{O}(10)$	5 634(3)	9(3)	$7412(2)$
C(11)	$4696(5)$	$2333(4)$	$7114(2)$
C(12)	$4428(5)$	$2412(4)$	$7914(2)$
C(13)	$3708(6)$	$3702(4)$	$8158(3)$
$\mathrm{O}(14)$	3281 (5)	$4750(3)$	$7665(2)$
$\mathrm{O}(15)$	$3530(5)$	$3562(3)$	8 986(2)
$C(16)$	2763 (11)	$4789(6)$	$9307(4)$
C(17)	$2523(16)$	$4472(8)$	$10175(5)$
I(18)	$8810.7(3)$	$2008.5(3)$	$5349.3(2)$

General Procedures for the Preparation of Lactones 12 and 20.-To a cold $\left(0^{\circ} \mathrm{C}\right)$ suspension of $\mathrm{NaH}(21 \mathrm{mg}$ of a $60 \% \mathrm{wt}$ dispersion washed free of oil with $2 \times 2 \mathrm{~cm}^{3}$ of hexanes, 0.52 $\mathrm{mmol})$ in THF ($5 \mathrm{~cm}^{3}$) was added a solution of acid 11 or $19(0.44$ $\mathrm{mmol})$ in THF $\left(2 \mathrm{~cm}^{3}\right)$. The resulting solution was warmed briefly to $25^{\circ} \mathrm{C}$ and then recooled to 0 C and treated with LiBHEt_{3} $\left(1.0 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ solution in hexanes; $0.48 \mathrm{~cm}^{3}, 0.48 \mathrm{mmol}$). After warming to $25^{\circ} \mathrm{C}$ for 15 h , brine ($2 \mathrm{~cm}^{3}$) was added at $0^{\circ} \mathrm{C}$ and the organic solvents were removed under reduced pressure. The aqueous residue was adjusted to pH 6 at $0^{\circ} \mathrm{C}$ with $5 \% \mathrm{HCl}$, saturated with NaCl , and extracted with EtOAc $\left(4 \times 5 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with brine $\left(10 \mathrm{~cm}^{3}\right)$, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated under reduced pressure to yield crude oils which were purified through a short plug of silica gel (20% EtOAc-hexanes eluent). Recrystallization afforded analytical samples.

3a,8-Dimethyl-3,3a,8,8a-tetrahydrofuro[2,3-b]indol-2-one 12. 72%; m.p. 106.5-107.5 $\mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}-\right.$ hexanes $) ~\left(l i t .,{ }^{8}\right.$ m.p. $107{ }^{\circ} \mathrm{C}$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1763,1609 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.80,2.96\left(\mathrm{ABq}, J_{\mathrm{AB}} 17.7,2 \mathrm{H}, 2 \times 3-\mathrm{H}\right), 3.01(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}), 5.53$ $(\mathrm{s}, 1 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}), 6.51(\mathrm{~d}, J 7.8,1 \mathrm{H}, 7-\mathrm{H}), 6.80(\mathrm{dt}, J 7.4,0.7,1 \mathrm{H}$, $5-\mathrm{H}), 7.07(\mathrm{dd}, J 7.2,0.8,1 \mathrm{H}, 4-\mathrm{H})$ and $7.18(\mathrm{dt}, J 7.7,1.1,1 \mathrm{H}$, $6-\mathrm{H}) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}) 23.75\left(\mathrm{CH}_{3}\right), 31.36(\mathrm{NMe}), 42.24(\mathrm{C}-3)$, 48.65 (C-3a), 105.66 (C-8a or C-7), 107.35 (C-8a or C-7), 119.53 (C-6), 122.78 (C-5), 129.18 (C-4), 133.70 (C-3b), 148.01 (C-7a) and $175.03(\mathrm{C}-2) ; m /=203\left(49, \mathrm{M}^{+}\right), 159(14), 158(100), 144$ (46), 91 (4), 68 (7) and 55 (36).

5-Methoxy-3a,8-dimethyl-3,3a,8,8a-tetrahydrofuro[2,3-b]-indol-2-one 20. 87%; m.p. $98.5-100{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$ (lit., ${ }^{9}$ m.p. 95-
$97 \mathrm{C}) ; r_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1766,1600,1285$ and $1035 ; \delta_{\mathrm{H}}(200$ $\mathrm{MHz}) 1.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.78,2.94\left(\mathrm{ABq}, J_{\mathrm{AB}} 17.6,2 \mathrm{H}\right.$, $2 \times 3-\mathrm{H}) .2 .97(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}), 3.75$ (s, $3 \mathrm{H}, \mathrm{OMe}$), 5.53 (s, 1 H , $8 \mathrm{a}-\mathrm{H}$), 6.42 (d, J 7.9, 1 H, 7-H) and 6.70-6.76 (d, partially overlapping dd, $J 7.9,2.5,2 \mathrm{H}, 4-\mathrm{H}, 6-\mathrm{H}) ; \delta_{\mathrm{C}}(63 \mathrm{MHz}) 23.53$ $\left(\mathrm{CH}_{3}\right), 31.81\left(\mathrm{NCH}_{3}\right), 42.27(\mathrm{C}-3), 48.91(\mathrm{C}-3 \mathrm{a}), 56.16(\mathrm{OMe})$, 106.35 (C-4), 107.78 (C-6), 110.53 (C-7), 113.53 (C-8a), 135.13 (C-3b), 142.17 (C-7a), $154.15(\mathrm{C}-5)$ and 174.76 (C-2); $m_{/}=233$ $\left(56, \mathrm{M}^{+}\right), 189(17), 188(100), 174$ (36) and $55(24)$.

Crystal Data for 4. $-\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{INO}_{3}, M=359.2$. Triclinic, $a=8.848(1), \quad b=11.364(2), \quad c=16.610(2) \AA, \quad x=73.56(1)$, $\beta=77.08(1), \gamma=67.04(1), V=1462.8(3) \AA^{3}$ (by least-squares refinement of 25 automatically centred reflections, $22<20<$ $32, \lambda=0.71073 \AA$). Space group $P 1, Z=4, D_{\mathrm{c}}=1.631 \mathrm{~g}$ cm^{-3} Colourless polyhedron. Crystal dimensions $0.37\{001\} \times$ $0.36\{110\} \times 0.33\{011\} \times 0.37\{101\} \times 0.42\{111\} \mathrm{nm}, \mu($ Mo$\mathrm{K} x)=21.63 \mathrm{~cm}^{-1}, F(000)=704$.

Data collection and processing. Siemens R3m/V diffractometers, ω scan mode with a scan width of $1.2, \omega$ scan speed 2.93 $29.30 \mathrm{deg} \mathrm{min}^{-1}$, graphite monochromated Mo-Kx radiation; 5185 reflections measured $(4<2 \theta \leq 50,+h, \pm k, \pm l), 5185$ unique, face-indexed numerical absorption correction min/max (transmission factors $0.496-0.554$), giving 4321 with $F \geq 6 \sigma(F)$.

Structure solution and refinement. Patterson and Fourier solution for two independent molecules per asymmetric unit. Full-matrix least-squares refinement with all non-hydrogen atoms anisotropic and hydrogen atoms (all locatable by difference synthesis) constrained in calculated positions with refined isotropic thermal parameters. Weighting scheme $\omega^{-1}=$
$\sigma^{2}(F)+a F^{2}, a=0.0014$. Final R and R_{w} values are 0.0299 and 0.0379 . Largest difference peak (hole) $0.64(-0.39)$ e \AA^{-3}. Siemens SHELXTL PLUS Software.

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada for support of this work.

References

1 S. Takano and K. Ogasawara, The Alkaloids, 1989, 36, 225, ed. A. Brossi, Academic Press; J. P. Marino, M.-W. Kim and R. Lawrence, J. Org. Chem., 1989, 54, 1782; T. B. K. Lee and G. S. K. Wong, J. Org. Chem., 1991, 50, 872.
2 J. G. Rodriguez, L. Canoira, C. E. Calderon, M. Martinez-Ripoll and S. Garcia-Blanco, J. Chem. Soc., Perkin Trans. 2, 1986, 199.

3 C. Wright, M. Shulkind, K. Jones and M. Thompson, Tetrahedron Lett., 1987, 28, 6389.
4 H. M. R. Hoffman, B. Schmidt and S. Wolff, Tetratedron, 1989, 45, 6113.

5 A. R. Katritzky, W.-Q. Fan and K. Akutagawa, Tetrahedron, 1986, 42, 4027.

6 Y. Luo, G. Yu, L. Chrisey and A. Brossi, Heterocycles, 1990, 31, 283.
7 K. Shishido, E. Shitara, H. Komatsu, K. Hiroya, K. Fukumoto and T. Kametani, J. Org. Chem., 1986, 51, 3007.
8 M. Ikeda, S. Matsugashita and Y. Tamura, J. Chem. Soc., Perkin Trans. I, 1977, 1770.
9 P. Rosenmund and E. Sadri, Liehigs Ann. Chem., 1979, 927.
Paper 1/04092H
Received 6th August 1991
Accepted 28th August 1991

[^0]: † This copy of PC Model was kindly provided by Dr. Kosta Steliou of the University of Montreal and is distributed by Serena Software, Bloomington, Indiana.

